Спорт. Диеты. Похудение. Упражнения. Продукты

Мышечная ткань особенности строения свойства и функции. Мышечная ткань: ее разновидности и значение для человека. Функции гладких мышц

В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин – 42% веса тела, у женщин – 35%, в пожилом возрасте – 30%, у спортсменов – 45-52%. Более 50% веса всех мышц расположено на нижних конеч­ностях; 25-30% – на верхних конечностях и, наконец, 20-25% – в области туловища и головы. Нужно, однако, заметить, что сте­пень развития мускулатуры у разных людей неодинакова. Она зависит от особенностей конституции, пола, профессии и других фак­торов. У спортсменов степень развития мускулатуры определяется не только характером двигательной деятельности. Систематические физические нагрузки приводят к структурной перестройке мышц, увеличению ее веса и объема. Этот процесс перестройки мышц под влиянием физической нагрузки получил название функциональной гипертрофии.

В зависимости от места расположения мышц их подразделяют на соответствующие топографические группы. Различают мышцы головы, шеи, спины, груди, живота; пояса верхних конечностей, плеча, предплечья, кисти; таза, бедра, голени, стопы. Кроме этого, могут быть выделены передняя и задняя группы мышц, поверхностные и глубокие мышцы, наружные и внутренние.

Основным функциональным свойством мышечной ткани является ее сократимость, т.е. способность укорачиваться наполовину (до 57% первоначальной длины).

Мышечная ткань образует активные органы опорно-двигательного аппарата - скелетные мышцы и мышечные оболочки внутренних органов, кровеносных и лимфатических сосудов. Сокращением мышц осуществляются дыхательные движения, передвижение пищи в органах пищеварения, движение крови в сосудах и многие другие физиологические акты (дефекация, мочеиспускание, роды и т.д.).

Значение мышечных тканей в жизни человека и животных чрезвычайно велико, поскольку мышцы являются активной частью двигательного аппарата. Благодаря им, возможны: все многообразие движений между звеньями скелета (туловищем, головой, конечностями), перемещение тела человека в пространстве путем преодоления сил гравитации (ходьба, бег, прыжки, вращения и т. п.), фиксация частей тела в определенных положениях, в частности сохранение вертикального положения тела.

С помощью мышц осуществляются механизмы дыхания, жева­ния, глотания и речи. Перемешивание и передвижение пищевых масс по пищеварительной трубке осуществляется за счет сократимых мышечных тканей. Благодаря сокращению мышц осуществляются физиологические акты (дефекация, мочеиспускание, роды и т.д.). Мышцы влияют на положение и функцию внут­ренних органов, способствуют току крови и лимфы, участвуют в об­мене веществ, в частности теплообмене. Кроме того, мышцы – один из важнейших анализаторов, воспринимающих положение тела че­ловека в пространстве и взаиморасположение его частей.

По своему строению, положению в организме и свойствам мышечная ткань делится на 3 вида: поперечнополосатую (исчерченную, скелетную), гладкую (неисчерченную, висцеральную) и сердечную.

Поперечнополосатая мышечная ткань составляет основную массу скелетных мышц и осуществляет их сократительную функцию. Она состоит из миоцитов, имеющих большую длину (до нескольких см) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Гладкая мышечная ткань состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 15-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть её деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

Сердечная поперечнополосатая мышечная ткань в структурном и физиологическом отношении занимает промежуточное положение между полосатой и гладкой мышечной тканями. Состоит из одно- или двухъядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы (по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения - вставочные диски, в которых объединяется их цитоплазма. Существует также другой межклеточный контакт - анастомозы (впячивание цитолеммы одной клетки в цитолемму другой). Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша). Особым свойством этой ткани является автоматия - способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках (типичные кардиомиоциты). Эта ткань является непроизвольной (атипичные кардиомиоциты). Существует третий вид кардиомиоцитов - секреторные кардиомиоциты (в них нет фибрилл). Они синтезируют предсердный натрийуретический пептид (атриопептин) - гормон, вызывающий снижение объёма циркулирующей крови и системного артериального давления.

Возможности регенерации сердечной мышечной ткани, в отличие от гладкой и скелетной, крайне незначительны. Поэтому если кардиомиоциты гибнут вследствие травмы или прекращения поступления по кровеносным сосудам питательных веществ и кислорода (инфаркт миокарда), то они не восстанавливаются, а на их месте остается рубец.

Строение мышцы. Мышца – это орган, являющийся целостным образованием, имеющим только ему присущие строение, функцию и расположение в организме. В состав мышцы как органа входят поперечнополосатая скелетная мышечная ткань, составляющая ее основу, рыхлая соединительная ткань, плотная соединительная ткань, сосуды, нервы. Основные свойства мышечной ткани – возбу­димость, сократимость, эластичность – более всего выражены в мышце как органе.

Сократимость мышц регулируется нервной системой. И.М. Сеченов писал: «Мышцы суть двигатели нашего тела, но сами по себе, без толчков из нервной системы, они действовать не могут, по­этому рядом с мышцами в работе участвует всегда нервная система и участвует на множество ладов».

В мышцах находятся нервные окончания – рецепторы и эффек­торы. Рецепторы – это чувствительные нервные окончания (свобод­ные – в виде концевых разветвлений чувствительного нерва или несвободные – в виде сложно построенного нервно-мышечного ве­ретена), воспринимающие степень сокращения и растяжения мыш­цы, скорость, ускорение, силу движения. От рецепторов информа­ция поступает в центральную нервную систему, сигнализируя о со­стоянии мышцы, о том, как реализована двигательная программа действия, и т.п. В большинстве спортивных движений участвуют почти все мышцы нашего тела. В связи с этим нетрудно себе пред­ставить, какой огромный поток импульсов притекает в кору голов­ного мозга при выполнении спортивных движений, как разнообразны получаемые данные о месте и степени напряжения тех или других групп мышц. Возникающее при этом ощущение частей своего тела, так называемое мышечно-суставное чувство, является одним из важнейших для спортсменов.

Эффекторы – это нервные окончания, по которым поступают импульсы из центральной нервной системы к мышцам, вызывая их возбуждение. К мышцам подходят также нервы, обеспечивающие мышечный тонус и уровень обменных процессов. Двигательные нервные окончания в мышцах образуют так называемые моторные бляшки . По данным электронной микроскопии, бляшка не прободает оболочку, а вдавливается в нее, между бляшкой и мыш­цей образуется контакт – синаптическая связь . Место вхо­да в мышцу нервов и сосудов называют воротами мышц .

Каждая мышца имеет среднюю часть, способную сокращаться и называемую брюшком , и сухожильные концы (сухожи­лия), не обладающие сократимостью и служащие для прикрепле­ния мышц.

Брюшко скелетной мышцы как органа состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов. Снаружи брюшко мышцы покрывает эпимизий (фасция) это тонкий, прочный и гладкий чехол из плотной волокнистой соединительной ткани, отдающий вглубь органа более тонкие соединительнотканные перегородки – перимизий , который окружает пучки мышечных волокон. От перимизия внутрь пучков мышечных волокон отходят тончайшие прослойки рыхлой волокнистой соединительной ткани - эндомизий , окружающий, кнаружи от сарколеммы, каждое мышечное волокно. В эндомизии содержатся сосуды и нервы.

Типы мышечных волокон в скелетной мышце – представляют собой разновидности мышечных волокон с определенными структурными, биохимическими и функциональными различиями. Типирование мышечных волокон производится на препаратах при постановке гистохимических реакций выявления ферментов - например, АТФазы, лактатдегидрогеназы (ЛДГ), сукцинатдегидрогеназы (СДГ) и др. В обобщенном виде можно условно выделить три основных типа мышечных волокон, между которыми существуют переходные варианты.

Тип I (красные) - медленные, тонические, устойчивые к утомлению, с небольшой силой сокращения. Характеризуются малым диаметром, относительно тонкими миофибриллами, высокой активностью окислительных ферментов (например, СДГ), низкой активностью гликолитических ферментов и миозиновой АТФазы, преобладанием аэробных процессов, высоким содержанием пигмента миоглобина (определяющим их красный цвет), крупных митохондрий и липидных включений, богатым кровоснабжением. Численно преобладают в мышцах, выполняющих длительные тонические нагрузки.

Тип IIВ (белые) - быстрые, тетанические, легко утомляющиеся, с большой силой сокращения. Характеризуются большим диаметром, крупными и сильными миофибриллами, высокой активностью гликолитических ферментов (например, ЛДГ) и АТФазы, низкой активностью окислительных ферментов, преобладанием анаэробных процессов, относительно низким содержанием мелких митохондрий, липидов и миоглобина (определяющим их светлый цвет), значительным количеством гликогена, сравнительно слабым кровоснабжением. Преобладают в мышцах, выполняющих быстрые движения, например, мышцах конечностей.

Тип IIА (промежуточные) - быстрые, устойчивые к утомлению, с большой силой, оксилительно-гликолитические. На препаратах напоминают волокна типа I. В равной степени способны использовать энергию, получаемую путем окислительных и гликолитических реакций. По своим морфологическим и функциональным характеристикам занимают положение, промежуточное между волокнами типа I и IIB.

Скелетные мышцы человека являются смешанными, т. е. содержат волокна различных типов, которые распределены в них мозаично.

Охватывая мышцу или группу мышц, собственная фасция (эпимизий) образует для них фасциальные влагалища с отверстиями для прохождения сосудов и нервов. Фасции развиты не везде одинаково. Там, где сильнее мышцы, фасции выражены лучше. Фасция способствует сокращению мышц в определенном направлении и препятствует ее смещению в стороны, является мягким остовом для мышц. При нарушении целостности фасции мышцы в этом месте выпячиваются, образуя мышечную грыжу. Соответственно новым данным (В.В. Кованов, 1961; А.П. Сорокин, 1973), фасции делят на рыхлые, плотные, поверхностные и глубокие. Рыхлые фасции формируются под действием незначительных сил тяги. Плотные фасции образуются обычно вокруг тех мышц, которые в момент их сокращения производят сильное боковое давление на окружающий их соединительнотканный футляр. Поверхностные фасции лежат непосредственно под подкожным жировым слоем, не расщепляются на пластинки и «одевают» все наше тело, образуя для него своеобразный футляр. Следует заметить, что футлярный принцип строения характерен для всех фасций и был подробно изучен Н.И. Пироговым. Глубокие (собственные) фасции покрывают отдельные мышцы и группы мышц, а также образуют влагалища для сосудов и нервов.

Все соединительнотканные образования мышцы с мышечного брюшка переходят на сухожильные концы. Они состоят из плотной волокнистой соединительной ткани, коллагеновые волокна которой лежат между мышечными волокнами, плотно соединяясь с их сарколеммой.

Сухожилие в организме человека формируется под влиянием ве­личины мышечной силы и направления ее действия. Чем больше эта сила, тем сильнее разрастается сухожилие. Таким образом, у каждой мышцы характерное для нее (как по величине, так и по форме) сухожилие.

Сухожилия мышц по цвету резко отличаются от мышц. Мышцы имеют красно-бурый цвет, а сухожилия белые, блестящие. Форма сухожилий мышц весьма разнообразна, но чаще встречаются сухо­жилия цилиндрической формы или плоские. Плоские, широкие су­хожилия носят названия апоневрозов (мышцы живота и др.). Сухожилия очень прочны и крепки. Например, пяточное сухожилие выдерживает нагрузку около 400 кг, а сухожилие четырехглавой мышцы бедра – 600 кг.

Сухожилия мышцы фиксируются или прикрепляются. В большинстве случаев они прикрепляются к надкостнице костных звеньев скелета, подвижных по отношению друг к другу, а иногда к фасциям (предплечья, голени), к коже (в области лица) или к органам (мышцы глазного яблока, мышцы языка). Одно из сухожилий мыш­цы является местом ее начала, другое – местом прикрепления. За начало мышцы обычно принимается ее проксимальный конец (проксимальная опора), за место прикрепления – дистальная часть (дистальная опора). Место начала мышцы считают неподвижной точкой (фиксированной), место прикрепления мышцы к подвижно­му звену – подвижной точкой. При этом имеют в виду наиболее часто наблюдаемые движения, при которых дистальные звенья тела, находящиеся дальше от тела, более подвижны, чем проксимальные, лежащие ближе к телу. Но встречаются движения, при кото­рых бывают закреплены дистальные звенья тела, и в этом случае проксимальные звенья приближаются к дистальным. Таким обра­зом, мышца может совершать работу или при проксимальной или при дистальной опоре. Следует заметить, что сила, с которой мыш­ца будет притягивать дистальное звено к проксимальному и, наобо­рот, проксимальное к дистальному, всегда будет оставаться одина­ковой (по третьему закону Ньютона – о равенстве действия и про­тиводействия).

Ткань - это совокупность клеток и межклеточного вещества, имеющих одинаковое строение, функции и происхождение.

В организме млекопитающих животных и человека выделяют 4 типа тканей: эпителиальной, соединительной, в которой можно выделить костную, хрящевую и жировую ткани; мышечной и нервной.

Ткань - расположение в организме, виды, функции, строение

Ткани - это система клеток и межклеточного вещества, имеющих одинаковое строение, происхождение и функции.

Межклеточное вещество - продукт жизнедеятельности клеток. Оно обеспечивает связь между клетками и формирует для них благоприятную среду. Оно может быть жидким, например, плазма крови; аморфным - хрящи; структурированным - мышечные волокна; твёрдым - костная ткань (в виде соли).

Клетки ткани имеют различную форму, которая определяет их функцию. Ткани делятся на четыре типа:

  • эпителиальная - пограничные ткани: кожа, слизистая;
  • соединительная - внутренняя среда нашего организма;
  • мышечная ткань;
  • нервная ткань.

Эпителиальная ткань

Эпителиальные (пограничные) ткани - выстилают поверхность тела, слизистые оболочки всех внутренних органов и полостей организма, серозные оболочки, а также формируют железы внешней и внутренней секреции. Эпителий, выстилающий слизистую оболочку, располагается на базальной мембране, а внутренней поверхностью непосредственно обращен к внешней среде. Его питание совершается путём диффузии веществ и кислорода из кровеносных сосудов через базальную мембрану.

Особенности: клеток много, межклеточного вещества мало и оно представлено базальной мембраной.

Эпителиальные ткани выполняют следующие функции:

  • защитная;
  • выделительная;
  • всасывающая.

Классификация эпителиев. По числу слоёв различают однослойный и многослойный. По форме различают: плоский, кубический, цилиндрический.

Если все эпителиальные клетки достигают базальной мембраны, это однослойный эпителий, а если с базальной мембраной связаны только клетки одного ряда, а другие свободны, - это многослойный. Однослойный эпителий может быть однорядным и многорядным, что зависит от уровня расположения ядер. Иногда одноядерный или многоядерный эпителий имеет мерцательные реснички, обращенные во внешнюю среду.

Многослойный эпителий Эпителиальная (покровная) ткань, или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Железистый эпителий Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток - желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Однослойный плоский эпителий - выстилает поверхность серозных оболочек: плевра, лёгкие, брюшина, перикард сердца.

Однослойный кубический эпителий - образует стенки канальцев почек и выводные протоки желёз.

Однослойный цилиндрический эпителий - образует слизистую желудка.

Каёмчатый эпителий - однослойный цилиндрический эпителий, на наружной поверхности клеток которого имеется каёмка, образованная микроворсинками, обеспечивающими всасывание питательных веществ - выстилает слизистую тонкого кишечника.

Мерцательный эпителий (реснитчатый эпителий) - псевдомногослойный эпителий, состоящий из цилиндрических клеток, внутренний край которых, т. е. обращенный в полость или канал, снабжён постоянно колеблющимися волосковидными образованиями (ресничками) - реснички обеспечивают движение яйцеклетки в трубах; в дыхательных путях удаляет микробов и пыль.

Многослойный эпителий расположен на границе организма и внешней среды. Если в эпителии протекают процессы ороговения, т. е. верхние слои клеток превращаются в роговые чешуйки, то такой многослойный эпителий называется ороговевающим (поверхность кожи). Многослойный эпителий выстилает слизистую рта, пищевой полости, роговую глаза.

Переходный эпителий выстилает стенки мочевого пузыря, почечных лоханок, мочеточника. При наполнении этих органов переходный эпителий растягивается, а клетки могут переходить из одного ряда в другой.

Железистый эпителий - образует железы и выполняет секреторную функцию (выделяет вещества - секреты, которые либо выводятся во внешнюю среду, либо поступают в кровь и лимфу (гормоны)). Способность клеток вырабатывать и выделять вещества, необходимые для жизнедетельности организма, называется секрецией. В связи с этим такой эпителий получил также название секреторного эпителия.

Соединительная ткань

Соединительная ткань Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь - клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами - от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань

Костная ткань Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткань

Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

Жировая ткань

Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани - теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

Мышечная ткань

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения - произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани - гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином.

Нервная ткань

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон - основная структурная и функциональная единица нервной ткани. Главная его особенность - способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела - дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце - аксоны. Аксоны образуют нервные волокна.

Нервный импульс - это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Теперь всю полученную информацию мы можем объединить в таблицу.

Типы тканей (таблица)

Группа тканей

Виды тканей

Строение ткани

Местонахождение

Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество - неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами - сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
Мышечная Поперечно-полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца. Имеет свойства возбудимости и сократимости
Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
Короткие отростки нейронов - древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
Нервные волокна - аксоны (нейриты) - длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) - к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)
Сохранить в соцсетях:

Мышечные ткани – это специализированные ткани, ос­новной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность мио­карда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных бел­ков.

Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характе­ризуется тем, что содержит миофибриллы, не имеющие по­перечной исчерченности; 2) поперечнополосатая (исчер­ченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделя­ется на скелетную и сердечную . Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, на­ходятся во внутренних органах и сосудах); 2) эпидермаль­ные (развиваются из кожной эктодермы, включают немы­шечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейраль­ные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) сома­тические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань); 5) целомические (развиваются из висцерального листка спланхнотома и образуют сердеч­ную мышечную ткань). Первые три типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым. К общим структурным признакам, характерным для мышечных тканей, следует отнести наличие: 1)специальных органелл – миофибрилл, благодаря взаимодействию их сократительных белков, осуществляется сокращение; 2)развитого трофиче­ского аппарата, обеспечивающего выполнение сократитель­ной функции – митохондрий, гладкой эндоплазматической сети, включений гликогена и миоглобина; 3)развитого опор­ного аппарата в виде двуслойной оболочки с окружающей ее сетью волокон соединительной ткани.

Гладкая мышечная ткань

Гладкая мышечная ткань мезенхимного происхожде­ния располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий мио­цит . Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально располо­женным ядром (рис. 7-1). Цитолемма гладкого мио­цита обра­зует многочисленные впячивания – кавеолы (мел­кие пу­зырьки). Снаружи цитолемму покрывает тонкая ба­зальная мембрана. В базальной мембране каждого миоцита есть от­верстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.

Органеллы общего значения – комплекс Гольджи, мито­хондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохонд­рии . Саркоплазматическая сеть участвует в синтезе гликоза­миногликанов и белковых молекул, из которых осуществля­ется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примы­кают к кавеолам и вместе с ними служат для депонирования ионов кальция.

Специальные органеллы видны в виде нитей, ориенти­рованных преимущественно вдоль длинной оси клетки и не имеющих поперечной исчерченности. В цитоплазме миоци­тов стабильно выявляются только тонкие нити – миофила­менты, состоящие из белка актина. Они прикрепляются на внутренней стороне цитолеммы, образуя плотные тельца, состоящие из белка актинина. При изменении мембранного потенциала клетки ионы кальция, поступающие из депо, ак­тивируют сборку миозиновых (более толстых) нитей и их взаимодействие с актиновыми. По мере образования актин-миозиновых мостиков происходит смещение актиновых миофиламентов навстречу друг другу, тяга передается на цитолемму, и клетка укорачивается. При уменьшении содер­жания кальция миозин теряет сродство к актину. В резуль­тате начинается расслабление миоцита и разборка миозино­вых нитей. Сокращение медленное, тоническое.

Рис. 7-1. Гладко-мышечная клет-ка.

1. Митохондрии.

2. Базальная мембрана.

3. Плотные тельца.

4. Зона щелевидных контактов.

5. Актиновые миофиламенты.

6. Ядро.

7. Кавеолы.

(По Lentz T. L. 1971).

Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и пара­симпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют про­ведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также мио­циты-пейсмекеры, которые сами генерируют потенциал дей­ствия и передают его соседним клеткам.

Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эн­домизий . Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием . В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпими­зием . При повышенной функциональной нагрузке гладкие миоциты гипертрофируются, как, например, в матке во время беременности, проявляя высокую способность к физиологи­ческой регенерации. При репаративной регенерации восста­новление возможно за счет деления малодифференцирован­ных миоцитов, которые находятся в составе мышечных ком­плексов, а также из адвентициальных клеток и миофиброб­ластов.

textus muscularis ) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон . Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Первоначальные исследования изображений зависят от расположения опухоли

Саркома матки может вызвать кровотечение, воспаление или боль в области таза. Диагностические и промежуточные системы. Из-за того, что саркомы редки, многие врачи не консультировались с пациентами с саркомой или ухаживали за ними. Когда подозревается саркома, важно проконсультироваться с медицинской бригадой , знакомой с саркомой.

Для установления диагноза и наблюдения за типом саркомы жизненно важно сделать двухпозицию. Успешная биопсия требует знаний о саркомах и их лечении, и это лучше всего делать хирургу, который знаком с саркомой, и экзамен будет проводиться патологоанатомом, который имеет опыт работы с типами саркомы.

Свойства мышечной ткани

  1. Сократимость

Виды мышечной ткани

Гладкая мышечная ткань

Состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности . Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов : кровеносных и лимфатических сосудов , мочевыводящих путей , пищеварительного тракта (сокращение стенок желудка и кишечника).

Бифиз может выполняться посредством открытой процедуры или закрытой процедуры с использованием большой иглы для удаления ткани. Биопсию следует делать правильно, чтобы собрать достаточное количество ткани для получения диагноза, но не так много ткани, чтобы скомпрометировать окончательную резекцию опухоли. Как правило, предпочтительным методом является наименее инвазивный метод, позволяющий патологу дать окончательный диагноз.

Эта постановка также основана на размере опухоли следующим образом . В дополнение к этой официальной постановке, врачи также рассматривают другие функции, которые указывают на высокую вероятность рецидива. Пациенты с такими характеристиками считаются «высоко рискованными» и могут рассматриваться более агрессивно.

Поперечно-полосатая скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц , а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Лечение саркомы мягких тканей. Учитывая редкость саркомы мягких тканей, лучше всего обращаться с пациентами в специализированном лечебном центре . Шведское исследование показало, что частота рецидивов в 2 раза выше у пациентов, которые не лечатся в специализированных центрах. Кроме того, исследования показали плохие результаты у пациентов, прибывших в специализированные медицинские центры после начальной операции. Конкретное лечение зависит от размера и местоположения опухоли, степени опухоли, независимо от ее распространения.

Лучевая терапия может быть выполнена до или после операции или во время операции с использованием брахитерапии. Исследования показали, что лучевая терапия предотвращает рецидив больше, чем если бы была сделана операция. Исследователи еще не могли признать, что профилактика рецидивов повышает выживаемость. До этой даты они не увеличивали выживаемость с помощью лучевой терапии.

Функции мышечной ткани

Двигательная. Защитная. Теплообменная. Так же можно выделить еще одну функцию - мимическую (социальную). Мышцы лица, управляя мимикой, передают информацию окружающим.

Примечания

Мышечная ткань (textus muscularis) обладает способностью сокращаться, укорачиваться, она осуществляет функции движения. Существуют три разновидности мышечной ткани: исчерченная (поперечнополосатая, скелетная), неисчерченная (гладкая) и сердечная. Наряду с этими разновидностями в организме человека выделяют мышечную ткань эпидер- мального происхождения (миоэпителиальные клетки) и нейтрального происхождения (миоциты мышцы, расширяющей и суживающей зрачок).

Также нет консенсуса относительно того, когда лучевая терапия должна использоваться для достижения наилучших результатов. Недавнее исследование в Канаде показало небольшое улучшение выживаемости в предоперационной повторной терапии, но это исследование имеет продолжение только 3 года. Канадское исследование также показало, что использование предоперационной лучевой терапии может привести к менее сильному заживлению области, затронутой хирургией. Испытания все еще ведутся, чтобы установить лучшее время для проведения лучевой терапии, но это может занять годы.

Исчерченная (поперечнополосатая, скелетная) мышечная ткань (textus muscularis stridtus, s. skeletdlis) образована цилиндрическими мышечными волокнами длиной от 1 до 40 мм и толщиной до 0,1 мм. Каждое волокно представляет собой комплекс, состоящий из миосимпласта и миосателлитоцитов, покрытых общей оболочкой - сарколеммой (от греч. sdrcos - мясо), укрепленной тонкими соединительнотканными волокнами, которая при световой микроскопии выглядит в виде тонкой темной полоски. Под сарколеммой мышечного волокна располагается множество ядер эллипсоидной формы, содержащих 1-2 ядрышка и большое количество элементов зернистой эндоплазматической сети. Центриоли отсутствуют. Примерно 2/3 сухой массы миосимпласта приходится на цилиндрические миофибриллы (рис. 25), проходящие через цитоплазму (саркоплазму). Между миофибриллами залегают многочисленные митохондрии с хорошо развитыми кристами и частички гликогена. Саркоплазма богата белком миоглобином, который подобно гемоглобину может связывать кислород.

Химиотерапию можно проводить до операции, чтобы уменьшить опухоль, чтобы обеспечить лучшую резекцию или после операции. Хирургия и лучевая терапия могут воздействовать только на небольшую область вокруг опухоли, в то время как основная цель химиотерапии - уничтожить любую раковую клетку в организме, которая не обнаружена. Эти клетки могут начать расти в других органах, чаще всего в легких.

Это: доксорубицин, ифосфамид, эпирубицин, гемцитабин и дакарбазин. Хотя у нас нет широкомасштабных контролируемых исследований, демонстрирующих, какое лечение дает наилучшие результаты, однако, более мелкие исследования показывают, что химиотерапия предлагает преимущества пациентам с высоким риском рецидива.

Рис. 25. Исчерченная (поперечнополосатая, скелетная) мышечная ткань: 1 - мышечное волокно; 2 - сарколемма; 3 - миофибриллы; 4 - ядра

В зависимости от толщины волокон и содержания в них миофибрилл и саркоплазмы различают красные и белые поперечнополосатые мышечные волокна. Красные волокна богаты саркоплазмой, миоглобином и митохондриями. Однако они самые тонкие, миофибрилл в них мало, они расположены группами. В красных волокнах окислительные процессы более интенсивны, чем в белых, выше активность сукцинатдегидрогеназы и больше гликогена. Белые волокна толстые, содержат меньше саркоплазмы, миоглобина и митохондрий, но миофибрилл в них больше и располагаются они равномерно. Структура и функция волокон неразрывно связаны. Так, белые волокна сокращаются быстрее, но быстрее устают. Красные способны сокращаться длительнее, долго оставаться в сокращенном (рабочем) состоянии. У человека мышцы содержат оба типа волокон. В зависимости от функции мышцы в ней преобладает тот или иной тип волокон.

Исследователи обнаружили, что удаление метастазов из легких через хирургию может значительно повысить выживаемость. Это непростая процедура, поэтому пациенты должны быть достаточно здоровыми, чтобы пережить хирургическую резекцию опухоли легкого . После первичного лечения пациенты должны обращаться к консультациям и обзорам один раз каждые 3-4 месяца, в течение 3 лет, затем каждые 6 месяцев в течение 2 лет, а затем ежегодно.

Абдоминальные саркомы следует сканировать каждые 3-6 месяцев в течение 3 лет, а затем ежегодно, потому что повторение гораздо труднее обнаружить в животе, используя только физическое обследование . Легочная рентгеновская или торакальная компьютерная томография может выполняться каждые 6-12 месяцев для мониторинга метастазов в легких.

Мышечные волокна имеют поперечную исчерченность: темные анизотропные диски (полоски А) чередуются со светлыми изотропными дисками (полоски I). Диск А разделен светлой зоной (полоска Н), в центре которой проходит мезофрагма (линия М). Диск I разделен темной линией Z (телофрагма). Мышечные волокна содержат сократительные элементы - миофибриллы, среди которых различают толстые (миозиновые) диаметром 10-15 нм и длиной 1,5 мкм, занимающие диск А, и тонкие (актиновые) диаметром 5-8 нм и длиной 1 мкм, лежащие в диске I и прикрепляющиеся к телофрагмам. Участок миофибриллы, расположенный между двумя телофрагмами, представляет собой саркомер - сократительную единицу длиной около 2,5 мкм (рис. 26). Благодаря тому

Также изучаются эффекты химиотерапии. Существуют клинические испытания, в которых используются новые исследователи, но с учетом небольшого числа случаев будет длительное время до получения окончательных результатов. Обработки, которые мы имеем сегодня, были усовершенствованы в ходе клинических испытаний, и многие новые способы продолжают изучаться. Поговорите со своим врачом о клинических испытаниях в этом районе.

Типы саркомы мягких тканей. Фибросаркома Злокачественная фиброзная гистиоцитома Липосаркома Рабдомиосаркома Лейомиосаркома Ангиосаркома Лимпангиосаркома Синовиальная клеточная саркома Нейрофибросаркома. Движение является одной из важнейших характеристик живых существ, его формы становятся разнообразными и очень сложными в животном мире, для которого оно характерно. Благодаря активным движениям животные приобретают большую независимость от изменений в окружающей среде . В этом смысле нервная и мышечная системы образуют функциональную единицу.

Рис. 26. Схема строения двух миофибрилл мышечного волокна: 1 - саркомер; 2 - полоска А (диск А); 3 - полоска H; 4 - линия М (мезофрагма) в середине диска А; 5 - полоска I (диск I); 6 - линия (телофрагма) в середине диска I; 7 - митохондрия; 8 - конечная цистерна; 9 - саркоплазматический ретикулум; 10 - поперечные трубочки (по В.Г. Елисееву и др.)

Функциональная структура полосатой мышцы. Мышечные волокна соединяются вместе соединительной тканью , расположенной вокруг саркомы, где она образует эндомизиум. Мышечные волокна сгруппированы в пучки, также окруженные конъюнктивной оболочкой, называемой перимизием. Тело мышцы, которое включает в себя все пучки мышечных волокон, также покрывается соединительной тканью, называемой эпимизием. Сухожилие - белый конец, очень сильный и нерастяжимый, цилиндрической или узкой ширины мышцы, с которой он был вставлен на кость.

Во время сильного сокращения мышц это соединение очень требовательно, и здесь чаще всего растягиваются растяжки и мышечные перерывы. Между двумя компонентами синаптическое пространство ок. 400 Å. Пресинаптический компонент содержит везикулы с ацетилхолином, химическим посредником, который передает импульс двигательного нерва.

что границы саркомеров всех миофибрилл одного волокна совпадают, возникает регулярная поперечная исчерченность, которая хорошо видна на продольных срезах мышечного волокна. На поперечных срезах мышечного волокна хорошо видны миофибриллы (myofibrilla) в виде темных округлых точек (пятен) на фоне светлой цитоплазмы.

На электронограмме хорошо видны более электронноплотные анизотропные и светлые изотропные диски, в них продольно идущие миофиламенты, осмиофильная линия Z и светлая зона (полоска Н), разделенная мезофрагмой, многочисленные митохондрии, элементы незернистой эндоплазматической сети. В расслабленной миофибрилле концы актиновых филаментов входят между миозиновыми, в сокращенной зоне перекрытия актиновых и миозиновых филаментов увеличиваются вплоть до полного исчезновения изотропного диска. Каждая миофибрилла окружена незернистой эндоплазматической сетью, состоящей из сетчатого и трубчатого элементов. Первые окружают центральную часть саркомера в виде ажурной сеточки, вторые охватывают большую часть саркомера в виде параллельных трубочек и расположены по обеим сторонам от сетчатых. Трубчатые элементы эндоплазматической сети переходят по обеим сторонам диска А в терминальные цистерны. На границе между дисками А и I сарколемма впячивается, образуя Т-трубочки (поперечные трубочки), которые разветвляются внутри волокна и анастомозируют только в горизонтальном направлении.

Постсинаптический компонент содержит многочисленные специфические холинергические рецепторы, к которым присоединен ацетилхолин, а также ферментные рецепторы, которые разрушают химический медиатор для нормальной синаптической передачи. Васкуляризация скелетных мышц очень богата, артерии проникают в мышцу в соединительной ткани между мышечными волокнами и параллельны им. В эндомизие имеется богатая капиллярная сеть, которая приносит кислородную кровь к мышечным волокнам. Венозная сетка несет мускулы продуктов углекислого газа и катаболизма.

На поверхности сарколеммы видны отверстия Т-трубочек. Две терминальные цистерны и поперечная трубочка контактируют между собой, образуя триады. Сети, окружающие саркомеры, сообщаются между собой.

Мышечное сокращение - это результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых), в результате чего длина филаментов изменяется.

Место проникновения в мышцы соматических и сенсорных волокон называется двигательной точкой; Как только внутри соединительной ткани мышцы, нервы делятся до уровня мышечных волокон. Нервы сенсорные нервы, ведущих информацию как проприоцептивная мышца на боли, напряжение мышц или положения сегменты мышцы и двигательные нервы, представленные аксонами мотонейронов а и у, что приводят заказы на движения добровольных или принудительный, где она заканчивается через нервно-мышечное соединение.

В микроскопической структуре поперечно-полосатого мышечного волокна выделяются следующие основные образования. Возбуждение и возбуждение. Это серия формирующей системы Инвагизации и в продольном направлении поперечных трубок, которые передают действие потенциал сарколеммы на миофибриллах.

В состав мышечного волокна, помимо миосимпласта, входят сателлитомиоциты (satellitomyocytus). Это уплощенные клетки, которые лежат на поверхности волокна под базальной мембраной. Крупное ядро этих клеток богаче хроматином, чем ядра миосимпластов. В отличие от последних, в клетке сателлитомиоцита имеется центросома, органелл немного. Сателлитомиоциты способны к синтезу ДНК и митотическому делению. Благодаря этому они являются стволовыми клетками поперечнополосатой мышечной ткани, которые участвуют в гистогенезе скелетной мускулатуры и ее регенерации.

Полосатый, состоящий из пучков или колонок диаметром 1 м, соединенных параллельно мышечному волокну. Он состоит из сариз или миофибрилл, который является сократительной мышцей мышцы. Миофибриллы составляют от нескольких сотен до нескольких тысяч мышечных волокон. Наблюдаемый в электронном микроскопе , каждый саркомер состоит из темного диска и окружен двумя прозрачными половинами дисков.

На чистом диске показаны только актиновые филаменты, а темный диск содержит миозин миофиламентов и актиновые микрофиламенты среди них. Одной прямой электрической стимуляции мышцы, или косвенно через моторный нерв, с постоянным током определенной интенсивности и продолжительности, вызывает мышечную секунду.

Неисчерченная (гладкая) мышечная ткань (textus musculdris nonstriatus) состоит из гладкомышечных клеток - миоцитов, которые располагаются

в стенках кровеносных, лимфатических сосудов и полых внутренних органов, в сосудистой оболочке глаза, в собственно коже. Гладкие миоциты - это удлиненные веретенообразные клетки длиной от 50 до 200 мкм, толщиной от 5 до 15 мкм, не имеющие поперечной исчерченности (рис. 27). Миоциты располагаются группами так, что их заостренные концы внедряются между двумя соседними клетками. Каждый миоцит окружен базальной мембраной, коллагеновыми и ретикулярными микрофибриллами, среди которых проходят эластические волокна. В зонах межклеточных контактов - нексусов базальная мембрана отсутствует. Удлиненное палочковидное ядро с четко видимым ядрышком достигает 10-25 мкм в длину, при сокращении клетки оно принимает форму што- пора. Клетка содержит продольно ориентированные миофиламенты. Лишь вблизи обоих полюсов ядра расположена лишенная миофиламентов цитоплазма, в которой залегают органеллы. Изнутри к цитолемме прилежат веретенообразные клеточные тельца (тельца прикрепления). Они располагаются и в цитоплазме миоцита. Прикрепительные тельца

Анализ сокращения мышц осуществляется путем графической гравировки явления с помощью устройств, называемых миографами, или с механическими, емкостными или индуктивными современными вставками. Это происходит, когда сжимающая мышца закрепляется на обеих конечностях. Таким образом, длина волокон не изменяется во время сокращения; Но происходит увеличение мышечного напряжения . Антигравитационные мышцы, которые сохраняют осанку, жевательные мышцы в процессе измельчения пищи, выполняют изометрические сокращения.

Изотоническое сжатие. Это делается мышцей, которая придает вес. Во время сжатия его длина уменьшается, а напряжение остается неизменным. Изотонические сокращения характерны для движения конечностей в процессе ходьбы, подъема постоянного веса . Освоительное сжатие. Это промежуточное функциональное проявление. Во время сокращения мышцы он сокращается, но с прогрессирующим увеличением напряжения. Экспериментальные сокращения сочетаются с предыдущими в процессе работы, когда превосходящая мышечная сила преодолевает растущую внешнюю силу.

Рис. 27. Строение неисчерченной (гладкой) мышечной ткани: 1 - миоцит; 2 - миофибриллы в саркоплазме; 3 - ядро миоцита; 4 - сарколемма; 5 - эндомизий; 6 - нерв; 7 - кровеносный капилляр (по И.В. Алмазову и Л.С. Сутулову)

(пластинки) являются эквивалентами Z-пластинок поперечнополосатых мышечных волокон, они образованы белком α-актинином. Пластинки представляют собой эллипсоидные тельца длиной до 3 мкм, толщиной 0,2-0,5 мкм, удаленные друг от друга на расстояние 1-3 мкм. Там, где находятся плотные прикрепительные тельца, микропиноцитозные пузырьки отсутствуют.

В цитоплазме гладких миоцитов находятся миофиламенты трех типов: тонкие актиновые диаметром 3-8 нм, которые прикрепляются к плотным тельцам; промежуточные миофиламенты толщиной около 10 нм, образующие пучки, которые соединяют между собой соседние плотные тельца; толстые короткие миозиновые филаменты диаметром около 15-17 нм.

Группа миоцитов, окруженных соединительной тканью, иннервируются обычно одним нервным волокном. Нервный импульс передается с одной мышечной клетки на другую по межклеточным контактам. Воз- буждение передается от одной клетки к другой через нексусы со скоростью 8-10 см/с. Однако в некоторых гладких мышцах (например, сфинктер зрачка) иннервируется каждый миоцит.

В расслабленном миоците между актиновыми филаментами расположены единичные короткие миозиновые. При сокращении актиновые


Рис. 28. Гладкая мышечная клетка (миоцит) в расслабленном (А) и сокращенном (Б) состояниях: 1 - ядро; 2 - плотные поля (прикрепительные тельца), прикрепленные к цитолемме; 3 - промежуточные филаменты (по А. Хэму и Д. Кормаку)

филаменты скользят по отношению друг к другу под влиянием миозина, подтягивая прикрепительные тельца, в результате чего цитолемма деформируется, плотные тельца сближаются, а участки, расположенные между ними, вздуваются (рис. 28). Движения одних плотных прикрепительных телец передаются другим промежуточными филаментами, что вызывает синхронное сокращение миоцита.

Гладкие мышцы совершают длительные тонические сокращения (например, сфинктеры полых органов, гладкие мышцы кровеносных сосудов) и относительно медленные движения, которые зачастую ритмичны. Глад- кие мышцы отличаются высокой пластичностью - после растяжения они долго сохраняют длину, которую получили в связи с растяжением.

Сердечная исчерченная мышечная ткань (textus muscularis cardiacus) которая по строению и функции отличается от скелетных мышц, состоит из сердечных миоцитов (кардиомиоцитов). По микроскопическому строению сердечная мышечная ткань похожа на скелетную (поперечнополосатая исчерченность). Однако сокращения сердечной мышцы


Рис. 29. Схема строения кардиомиоцита: 1 - базальная мембрана; 2 - окончание миопротофибрилл на цитолемме кардиомиоцита; 3 - вставочный диск между кардиомиоцитами; 4 - саркоплазматическая сеть; 5 - саркосомы (митохондрии); 6 - миопротофибриллы; 7 - диск А (анизотропный диск); 8 - диск I (изотропный диск); 9 - саркоплазма

(по В.Г. Елисееву и др.)

не подконтрольны сознанию человека, она иннервируется вегетативной нервной системой , подобно неисчерченной мышечной ткани.

Кардиомиоциты (myocytus cardiacus) - это клетки неправильной цилиндрической формы, длиной 100-150 мкм и диаметром 10-20 мкм (рис. 29). Каждый кардиомиоцит имеет 1-2 овальных удлиненных ядра, лежащих в центре и окруженных микрофибриллами, расположенными на периферии строго прямолинейно. На обоих полюсах ядра видны удлиненные зоны цитоплазмы, лишенной миофибрилл. Весьма характерны контакты двух соседних кардиомиоцитов, имеющих вид извилистых темных полосок , вставочных дисков, которые активно участвуют в передаче возбуждения от клетки к клетке. Клетки богаты митохондриями. Сарколемма кардиомиоцитов толщиной около 9 нм имеет множество микропиноцитозных инвагинаций, пузырьков. По мере старения человека в его кардиомиоцитах накапливается липофусцин.

Строение миофибрилл кардиомиоцитов аналогично таковому скелетных мышц. В периферических отделах кардиомиоцитов и между митохондриями находится множество частичек гликогена и элементов незернис- той эндоплазматической сети. В кардиомиоцитах имеется очень большое количество крупных митохондрий с хорошо развитыми кристами, которые располагаются группами между миофибриллами. На уровне Z-линий цитолемма кардиомиоцитов также формирует Т-трубочки, вблизи которых сосредоточены скопления цистерн незернистой эндоплазматической сети. Однако триады выражены менее четко, чем в скелетных мышцах.

Кардиомиоциты соединены между собой вставочными дисками, которые на продольном разрезе имеют вид ступенек. В этих участках кардиомиоциты соединяются между собой наподобие зубчатых швов чере- па. Сарколемма соседних клеток соединена с помощью десмосом, лентовидных поясков или пятен сцепления, к которым с обеих сторон прикрепляются актиновые филаменты. Поперечные участки расположены на месте Z-линий. Между кардиомиоцитами (в эндомизиуме) располагаются кровеносные капилляры.

Миоэпителиоциты (эктодермального происхождения) - многоотростчатые клетки, в цитоплазме которых имеются способные сокращаться филаменты, состоящие из мышечных белков. Миоэпителиоциты окружают начальные отделы молочных, потовых, слезных, слюнных желез и, сокращаясь, способствуют выведению секрета из клетки. Мионевроциты радужной оболочки глаза, образующие мышцы, суживающие и расширяющие зрачок, являются производными нейроэктодермы. Миоэпителиоциты и мионевроциты иннервируются вегетативной нервной системой.

Мышечная ткань: виды, особенности строения, месторасположение в организме

Мышечные ткани (textus musculares) – это специализированные ткани, которые обеспечивают движение (перемещение в пространстве) организма в целом, а также его частей и внутренних органов. Сокращение мышечных клеток или волокон осуществляется с помощью миофиламентов и специальных органелл – миофибрилл и является результатом взаимодействия молекул сократительных белков.

Согласно морфункциональной классификации, мышечные ткани делят на две группы:

I – поперечнополосатая (исчерченная) мышечная ткань – содержит постоянно комплексы актиновых и миозиновых миофиламентов – миофибриллы и имеет поперечную исчерченность;

II – гладкая (неисчерченная) мышечная ткань – состоит из клеток, которые постоянно содержат только актиновые миофиламенты и не имеют поперечной исчерченности.

Поперечнополосатая мышечная ткань

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную . Обе эти разновидности развиваются из мезодермы .

Поперечнополосатая скелетная мышечная ткань. Эта ткань образует скелетные мышцы, мышцы рта, глотки, частично пищевода, мышцы промежности и др. В разных отделах она имеет свои особенности. Обладает высокой скоростью сокращения и быстрой утомляемостью. Этот тип сократительной деятельности называется тетаническим . Поперечнополосатая скелетная мышечная ткань сокращается произвольно в ответ на импульсы, идущие от коры больших полушарий головного мозга. Однако часть мышц (межреберные, диафрагма и др.) имеет не только произвольный характер сокращения, но и сокращается без участия сознания под влиянием импульсов из дыхательного центра, а мышцы глотки и пищевода сокращаются непроизвольно.

Структурной единицей является поперечнополосатое мышечное волокно – симпласт, цилиндрической формы с округлыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций.

Сократительным аппаратом их являются поперечнополосатые миофибриллы , которые образуют пучок волоконец. Это белковые нити, расположенные вдоль волокна. Длина их совпадает с длиной мышечного волокна. Миофибриллы состоят из темных и светлых участков – дисков . Так как темные и светлые диски всех миофибрилл одного мышечного волокна располагаются на одном уровне, образуется поперечная исчерченность; поэтому мышечное волокно называется поперечнополосатым.Темные диски в поляризованном свете имеют двойное лучепреломление и называются анизотропными, или А-дисками; светлые диски не имеют двойного лучепреломления и называются изотропными, или I-дисками.

Разная светопреломляющая способность дисков обусловлена их различным строением. Светлые (I) диски однородны по составу: образованы только параллельно лежащими тонкими нитями – актиновыми миофиламентами , состоящими преимущественно из белка актина , а также тропонина и тропомиозина . Темные (А) диски неоднородны: образованы как толстыми миозиновыми миофиламентами , состоящими из белка миозина , так и частично проникающими между ними тонкими актиновыми миофиламентами .

В середине каждого I–диска проходит темная линия, которая называется Z–линией, или телофрагмой . К ней прикрепляется один конец актиновых нитей. Участок миофибриллы между двумя телофрагмами называется саркомером . Саркомер – структурно-функциональная единица миофибриллы. В центре A-диска можно выделить светлую полосу, или зону Н , содержащую только толстые нити. В середине ее выделяется тонкая темная линия М, или мезофрагма . Таким образом, каждый саркомер содержит один А-диск и две половины I-диска .

Поперечнополосатая сердечная мышечная ткань. Образует миокард сердца. Содержит, как и скелетная, миофибриллы, состоящие из темных и светлых дисков. Состоит из клеток – кардиомиоцитов , связанных между собой вставочными дисками. При этом образуются цепочки кардиомиоцитов – функциональные мышечные волокна, которые анастомозируют между собой (переходят одно в другое), образуя сеть. Такая система соединений обеспечивает сокращение миокарда как единого целого. Сокращение сердечной мышцы непроизвольное , регулируется вегетативной нервной системой.

Среди кардиомиоцитов различают:

· сократительные (рабочие) кардиомиоциты – содержат меньше миофибрилл, чем скелетные мышечные волокна, но очень много митохондрий, поэтому сокращаются с меньшей силой, но долго не утомляются; с помощью вставочных дисков осуществляют механическую и электрическую связь кардиомиоцитов;

· атипичные (проводящие) кардиомиоциты – образуют проводящую систему сердца для формирования и проведения импульсов к сократительным кардиомиоцитам;

· секреторные кардиомиоциты – располагаются в предсердиях, способны вырабатывать гормоноподобный пептид – натрий-уретический фактор , снижающий артериальное давление.

Гладкая мышечная ткань

Развивается из мезенхимы, располагается в стенке трубчатых органов (кишечник, мочеточник, мочевой пузырь, кровеносные сосуды), а также радужке и цилиарном (ресничном) теле глаза и мышцах, поднимающих волосы в коже.

Гладкая мышечная ткань имеет клеточное строение (гладкий миоцит) и обладает сократительным аппаратом в виде гладких миофибрилл . Она сокращается медленно и способна длительно находиться в состоянии сокращения, потребляя относительно малое количество энергии и не утомляясь. Такой тип сократительной деятельности называется тоническим . К гладкой мышечной ткани подходят вегетативные нервы, и в отличие от скелетной мышечной ткани она не подчиняется сознанию, хотя и находится под контролем коры больших полушарий головного мозга.

Гладкомышечная клетка имеет веретенообразную форму и заостренные концы. В ней есть ядро, цитоплазма (саркоплазма), органеллы и оболочка (сарколемма). Сократительные миофибриллы располагаются по периферии клеток вдоль ее оси. Эти клетки плотно прилежат друг к другу. Опорным аппаратом в гладкой мышечной ткани являются тонкие коллагеновые и эластические волокна, расположенные вокруг клеток и связывающие их между собой.


Похожая информация.


Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!